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Recap. of score-based model 

• Fisher divergence between 𝑝 𝒙 and 𝑞 𝒙 :

𝐷! 𝑝, 𝑞 ≔
1
2
𝐸𝒙~$ ∇𝒙 log 𝑝 𝒙 − ∇𝒙 log 𝑞 𝒙 %

%

• Score matching(Hyv'rinen, 2005)
1
2
𝐸𝒙~$!"#" 𝒔& 𝒙 − ∇𝒙 log 𝑝'()( 𝒙 %

%

= 𝐸𝒙~$!"#"
1
2
𝒔& 𝒙 %

% + 𝑡𝑟 ∇𝒙𝒔& 𝒙 + 𝑐𝑜𝑛𝑠𝑡.
• Not scalable for deep score-based models and high dimensional 

data
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𝐸*𝒙~+$ ∇*𝒙 log 𝑞, 9𝒙 − 𝒔& 9𝒙 %
%

= 𝐸𝒙~$!"#" 𝒙 𝐸*𝒙~+$ *𝒙|𝒙 ∇*𝒙 log 𝑞, 9𝒙|𝒙 − 𝒔& 9𝒙 %
% + const.

= 𝐸𝒙~$!"#" 𝒙 𝐸𝒛~/ 𝟎,𝑰
1
𝜎
𝒛 + 𝒔& 𝒙 + 𝜎𝒛

%

%
+ const.

• Pros
• more scalable than score matching
• reduces score estimation to a denoising task

• Con: cannot estimate the score of clean data (noise-free)
𝒔& 𝒙 ≈ ∇𝒙 log 𝑞, 𝒙 ≠ ∇𝒙 log 𝑝'()( 𝒙

Denoising score matching with Langevin dynamics

Perturbation 
distribution/kernel

𝒙~𝑝!"#" 𝒙
Data distribution

*𝒙 ~𝑞$ *𝒙
Noise-perturbed
data distribution
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Denoising score matching with Langevin dynamics

• Let 𝑞, 9𝒙|𝒙 ≔ 𝑁 9𝒙|𝒙, 𝜎%𝑰 , 𝑞, 9𝒙 ≔ ∫𝑝'()( 𝒙 𝑞, 9𝒙|𝒙 𝑑𝒙
• The objective

𝐸*𝒙~+$ *𝒙 𝒔& 9𝒙 − ∇*𝒙 log 𝑞, 9𝒙 %
%

= 𝐸𝒙~$!"#" 𝒙 𝐸*𝒙~+$ *𝒙|𝒙 𝒔& 9𝒙 − ∇*𝒙 log 𝑞, 9𝒙|𝒙 %
% + 𝑐𝑜𝑛𝑠𝑡.

• Consider a sequence of positive noise scales
𝜎5 < 𝜎% < ⋯ < 𝜎6

• 𝜎5 is small enough 𝑞,% 𝒙 ≈ 𝑝'()( 𝒙
• 𝜎6 is large enough 𝑞,& 𝒙 ≈ 𝑁 𝒙|𝟎, 𝜎6%𝑰
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Score-based generative modeling

Score 
Matching

Scores function
𝒔% 𝒙 ≈ ∇𝒙 log 𝑝!"#" 𝒙

New samplesData samples
𝒙 ' , 𝒙 ( , … , 𝒙 𝑵

Langevin
dynamics
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Joint score estimation via noise conditional score 

networks

Noise Conditional
Score Network
(NCSN)

𝑥'

𝑥(

𝜎

𝑠%,'

𝑠%,(

𝜎+ 𝜎( 𝜎'
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Denoising score matching with Langevin dynamics

• For each 𝑞,' 𝒙 with 𝜎5 < 𝜎% < ⋯ < 𝜎6, Song & Ermond run 𝑇
steps of Langevin MCMC to get a sample sequentially

𝒙A) ≔ 𝒙A)B5 +
𝛼A
2
𝒔&∗ 𝒙A)B5, 𝜎A + 𝛼A𝒛, 𝑡 = 1,2, … , 𝑇

• where 𝛼A > 0 is the step size and 𝒛~𝑁(𝟎, 𝑰)

𝛼A ≔ 𝜖
𝜎A%

𝜎5%
• 𝜖 > 0

Generative Modeling by Estimating Gradients of the Data Distribution
Song Yang, and Stefano Ermon. NeurIPS 2019
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Using multiple noise levels

Data

Annealed Langevin dynamics

Score matching loss

Positive weighting 
function

Noise Conditiona
l 

Score Model 
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Denoising score matching with Langevin dynamics
Preprint.

Figure 1: Top: a conceptual illustration of a VE diffusion model sampling process and DMCMC
sampling process. VE diffusion models integrate the reverse-S/ODE starting from maximum diffu-
sion time / maximum noise level. So, samples are often noisy with small computation budget due to
large truncation error. DMCMC produces an MCMC chain which travels close to the image mani-
fold (compare the noise level �). So, the MCMC samples can be denoised to produce high-quality
data with relatively little computation. Bottom: Visualization of sampling processes without (left)
and with (right) DMCMC on CelebA-HQ-256 under a fixed computation budget.

pling. Furthermore, multitude of recent works on score-based generative modeling focus on improv-
ing reverse-S/ODE integrators (Jolicoeur-Martineau et al., 2021; Lu et al., 2022; Karras et al., 2022;
Zhang & Chen, 2022).

In this work, we develop an orthogonal approach to accelerating score-based sampling. Specifically,
we propose Denoising MCMC (DMCMC) which combines MCMC with reverse-S/ODE integrators.
MCMC is used to generate samples {(xn, tn)} in the product space of data x and variance exploding
(VE) diffusion time t / noise level � (see Fig. 1 top panel). Since all modes are connected in the
product space, MCMC mixes well. Then, a reverse-S/ODE integrator solves the reverse-S/ODE
starting at xn from time t = tn to t = 0. Since MCMC explores high-density regions, the MCMC
chain stays close to the data manifold, so tn tends to be close to 0, i.e., noise level tends to be small
(see Fig. 1 top and bottom panels). Thus, integrating the reverse-S/ODE from t = tn to t = 0 is
much faster than integrating the reverse-S/ODE from maximum time t = T to t = 0 starting from
noise. This leads to a significant acceleration of the sampling process.

Our contributions can be summarized as follows.

• We introduce the product space of data and diffusion time, and develop a novel score-based
sampling framework called Denoising MCMC on the product space. Our framework is
general, as any MCMC, any VE process noise-conditional score function, and any reverse-
S/ODE integrator can be used in a plug-and-play manner.

• We develop Denoising Langevin Gibbs (DLG), which is an instance of Denoising MCMC
that is simple to implement and is scalable. The MCMC part of DLG alternates between a
data update step with Langevin dynamics and a noise level prediction step, so all that DLG
requires is a pre-trained noise-conditional score network and a noise level classifier.

2

Conceptual illustration of a multiple noise score matching with 
Langevin sampling process

DENOISING MCMC FOR ACCELERATING DIFFUSION-BASED GENERATIVE MODELS
Beomsu Kim, Jong Chul Ye. ICML 2023
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Denoising score matching with Langevin dynamics

• Let 𝑞, 9𝒙|𝒙 ≔ 𝑁 9𝒙|𝒙, 𝜎%𝐼 , 𝑞, 9𝒙 ≔ ∫𝑝'()( 𝒙 𝑞, 9𝒙|𝒙 𝑑𝒙
• Consider a sequence of positive noise scales

𝜎5 < 𝜎% < ⋯ < 𝜎6
• 𝜎5 is small enough 𝑞,% 𝒙 ≈ 𝑝'()( 𝒙
• 𝜎6 is large enough 𝑞,& 𝒙 ≈ 𝑁 𝒙|𝟎, 𝜎6%𝑰

Data space Noise space

𝑝!"#" 𝑞$! 𝑞$" ⋯ 𝑞$%
≈ 𝑁 𝟎, 𝜎%&𝑰
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Denoising score matching with Langevin dynamics

• Let 𝑞, 9𝒙|𝒙 ≔ 𝑁 9𝒙|𝒙, 𝜎%𝐼 , 𝑞, 9𝒙 ≔ ∫𝑝'()( 𝒙 𝑞, 9𝒙|𝒙 𝑑𝒙
• Consider a sequence of positive noise scales

𝜎5 < 𝜎% < ⋯ < 𝜎6
• Noise conditional score network

T
AC5

6

𝜎A% 𝐸𝒙~$!"#" 𝒙 𝐸*𝒙~+$' *𝒙|𝒙 𝒔& 9𝒙, 𝜎A − ∇*𝒙 log 𝑞,' 9𝒙|𝒙 %
%

• Given sufficient data and model capacity, the optimal score-
based model

𝒔&∗ 𝒙, 𝜎A ≈ ∇𝒙 log 𝑞,' 𝒙 for 𝜎 ∈ 𝜎5, … , 𝜎6
• The weights 𝜎A% are related to 𝜎A% ∝ 1/𝐸 ∇*𝒙 log 𝑝,' 9𝒙|𝒙 %

%
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Generation with annealed Langevin dynamics

• For each 𝑞,' 𝒙 with 𝜎5 < 𝜎% < ⋯ < 𝜎6, Song & Ermond run 𝑇
steps of Langevin MCMC to get a sample sequentially

𝒙A) ≔ 𝒙A)B5 +
𝛼A
2
𝒔&∗ 𝒙A)B5, 𝜎A + 𝛼A𝒛, 𝑡 = 1,2, … , 𝑇

• where 𝛼A > 0 is the step size and 𝒛~𝑁(𝟎, 𝑰)

𝛼A ≔ 𝜖
𝜎A%

𝜎5%
• 𝜖 > 0

Generative Modeling by Estimating Gradients of the Data Distribution
Song Yang, and Stefano Ermon. NeurIPS 2019
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Denoising diffusion probabilistic models(DDPM)

• Consider a seq. of positive noise scales 0 < 𝛽5 < 𝛽%⋯ < 𝛽D < 1
• 𝒙E~𝑝'()( 𝒙 , construct latent variables 𝒙E, 𝒙5, 𝒙%, … , 𝒙D s.t.

𝑞 𝒙)|𝒙)B5 ≔ 𝑵(𝒙)| 1 − 𝛽)𝒙)B5, 𝛽)𝑰)
• I.e., 𝑞 𝒙) 𝒙E = 𝑵(𝒙E| \𝛼)𝒙E, 1 − \𝛼) 𝑰) where 𝛼) ≔ 1− 𝛽), 
\𝛼) ≔ ∏FC5

) 𝛼F
• Similar to SMLD, we can denote the perturbed data distribution

𝑞 𝒙) ≔ ^𝑞 𝒙) 𝒙 𝑝'()( 𝒙 𝑑𝒙

• The noise scales are prescribed s.t. 𝒙D~𝑞(𝒙D) ≈ 𝑁 𝟎, 𝑰

𝑝!"#" 𝑞(𝒙') 𝑞(𝒙&) ⋯ 𝑞(𝒙()
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Denoising diffusion probabilistic models(DDPM)

• A variational Markov chain in the reverse direction is 
parametrized with

𝑝& 𝒙)B5|𝒙) = 𝑁 𝒙)B5|𝝁& 𝒙), 𝑡 , 𝛽)𝑰
• where 𝝁& 𝒙), 𝑡 = 5

G#
𝒙) + 𝛽)𝒔& 𝒙), 𝑡

• Re-weighted variant of the evidence lower bound

T
)C5

D

1 − \𝛼) 𝐸𝒙~$!"#" 𝒙 𝐸𝒙#~+ 𝒙#|𝒙 𝒔& 𝒙), 𝑡 − ∇𝒙# log 𝑞 𝒙)|𝒙 %
%

• which is a weighted sum of denoising score matching
𝒔&∗ 𝒙), 𝑡 ≈ ∇𝒙# log 𝑞 𝒙)

• The weights 1 − \𝛼) are related to

1 − \𝛼) ∝ 1/𝐸 ∇𝒙# log 𝑞 𝒙)|𝒙 %
%
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Denoising diffusion probabilistic models(DDPM)

• Generate samples by starting from 𝒙D~𝑁 𝟎, 𝑰
• 𝒙)B5 ≔

5
G#

𝒙) + 𝛽)𝒔&∗ 𝒙), 𝑡

,𝝁!∗ 𝒙#,#

+ 𝛽)𝒛, 𝑡 = 𝑇, 𝑇 − 1,… , 2

• We call this method ancestral sampling (∏)C5
D 𝑝& 𝒙)B5|𝒙) )

Denoising Diffusion Probabilistic Models
Jonathan Ho, Ajay Jain, Pieter Abbeel. NeurIPS 2020
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Summary of score-based models

• SMLD and DDPM involve sequentially corrupting training data 
with slowly increasing noise, and then learning to reverse this 
corruption to form a generative model of the data

• SMLD estimates the score at each noise scale and then use 
Langevin dynamics to sample from a sequence of decreasing 
noise scales during generation

• DDPM trains a sequence of probabilistic models to reverse each 
step of the noise corruption, using knowledge of the functional 
form of the reverse distributions to make training tractable
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Recap: Latent Variable Models

• Observable variables 𝒙 ∈ ℝ'
• Latent variables 𝒛 ∈ ℝH (unobservable)

𝑝'()( 𝒙 =T
𝒛
𝑝 𝒙, 𝒛

𝑜𝑟 = ^𝑝 𝒙, 𝒛 𝑑𝒛
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Recap: Mixture of Gaussians

• Mixture of Gaussians. Bayes net: 𝑧 → 𝒙
• 𝑧 = 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑧 𝛾5, ⋯ , 𝛾I
• 𝑝 𝒙 𝑧 = 𝑘 = 𝑁 𝒙 𝜇J, ΣJ

• Generative Process
• Pick a mixture component 𝑘 by sampling 𝑧
• Generate a data point by sampling from that Gaussian
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Denoising diffusion probabilistic models(DDPM)

• DDPM is a latent variable model

𝑝& 𝒙E ≔ ^𝑝& 𝒙E, 𝒙5… , 𝒙D 𝑑𝒙5:D

• 𝒙E = 𝑞 𝒙E = 𝑝'()(
• The joint distribution 𝑝& 𝒙E:D is called the reverse process 

starting at 𝑝& 𝒙D = 𝑁 𝒙D 𝟎, 𝑰

𝑝& 𝒙E:D = 𝑝& 𝒙D m
)C5

D

𝑝& 𝒙)B5|𝒙) ,

𝑝& 𝒙)B5|𝒙) = 𝑁 𝒙)B5 𝝁& 𝒙), 𝑡 , Σ& 𝒙), 𝑡
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Denoising diffusion probabilistic models(DDPM)

• Forward process or diffusion process 𝑞 𝒙5:D 𝒙E is fixed to a 
Markov chain that gradually adds Gaussian noise to the data 
according to a variance schedule 0 < 𝛽5 < ⋯ < 𝛽D < 1

𝑞 𝒙5:D|𝒙E =m
)C5

D

𝑞 𝒙)|𝒙)B5 ,

𝑞 𝒙)|𝒙)B5 ≔ 𝑁 𝒙) 1 − 𝛽)𝒙)B5, 𝛽)𝑰
• 𝛽) can be learned by reparameterization or held constants as 

hyperparameters
• Let 𝛼) ≔ 1− 𝛽) and \𝛼) ≔ ∏FC5

) 𝛼F, then 
𝑞 𝒙)|𝒙E = 𝑁 𝒙) \𝛼)𝒙E, 1 − \𝛼) 𝑰
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Denoising diffusion probabilistic models(DDPM)

𝑞 𝒙#|𝒙#.' = 𝑁 𝒙# 𝛼#𝒙#.', 𝛽#𝑰
𝑞 𝒙#|𝒙/ = 𝑁 𝒙# P𝛼#𝒙/, 1 − P𝛼# 𝑰

𝑝% 𝒙#.' 𝒙# = 𝑁 𝒙#.' 𝝁% 𝒙# , 𝑡 , Σ% 𝒙# , 𝑡
where Σ% 𝒙# , 𝑡 = 𝜎#(𝑰 = 𝛽#𝑰

• What is target of 𝑝& 𝒙)B5 𝒙) = 𝑁 𝒙)B5 𝝁& 𝒙), 𝑡 , 𝛽)𝑰 ?
• 𝑝& 𝒙)B5 𝒙) ≈ 𝑞 𝒙)B5|𝒙) ?

𝑝!"#" 𝑝!"#"

𝒙) 𝒙' ⋯ 𝒙(~𝑁(𝟎, 𝑰)

Forward Markov chain 𝑞 𝒙# 𝒙#*' Reverse Markov chain 𝑝+ 𝒙#*' 𝒙#

𝒙)𝒙'⋯

Image to noise(prescribed) Noise to image(learnable)
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Denoising diffusion probabilistic models(DDPM)

𝑝!"#" 𝑝!"#"

𝒙) 𝒙' ⋯ 𝒙(~𝑁(𝟎, 𝑰)

Forward Markov chain 𝑞 𝒙# 𝒙#*' Reverse Markov chain 𝑝+ 𝒙#*' 𝒙#

𝒙)𝒙'⋯

Image to noise(prescribed) Noise to image(learnable)

𝑞 𝒙#|𝒙#.' = 𝑁 𝒙# 𝛼#𝒙#.', 𝛽#𝑰
𝑞 𝒙#|𝒙/ = 𝑁 𝒙# P𝛼#𝒙/, 1 − P𝛼# 𝑰

𝑝% 𝒙#.' 𝒙# = 𝑁 𝒙#.' 𝝁% 𝒙# , 𝑡 , Σ% 𝒙# , 𝑡
where Σ% 𝒙# , 𝑡 = 𝜎#(𝑰 = 𝛽#𝑰

• What is target of 𝑝& 𝒙)B5 𝒙) = 𝑁 𝒙)B5 𝝁& 𝒙), 𝑡 , 𝛽)𝑰 ?
• 𝑝& 𝒙)B5 𝒙) ≈ 𝑞 𝒙)B5|𝒙) ?
• 𝑞 𝒙)B5|𝒙) is not tractable

𝑞 𝒙)B5|𝒙) =
𝑞 𝒙)|𝒙)B5 𝑞 𝒙)B5

𝑞 𝒙)
, 𝑞 𝒙) = ^𝑞 𝒙) 𝒙E 𝑞 𝒙E 𝑑𝒙E
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Denoising diffusion probabilistic models(DDPM)

𝑝!"#" 𝑝!"#"

𝒙) 𝒙' ⋯ 𝒙(~𝑁(𝟎, 𝑰)

Forward Markov chain 𝑞 𝒙# 𝒙#*' Reverse Markov chain 𝑝+ 𝒙#*' 𝒙#

𝒙)𝒙'⋯

Image to noise(prescribed) Noise to image(learnable)

𝑞 𝒙#|𝒙#.' = 𝑁 𝒙# 𝛼#𝒙#.', 𝛽#𝑰
𝑞 𝒙#|𝒙/ = 𝑁 𝒙# P𝛼#𝒙/, 1 − P𝛼# 𝑰

𝑝% 𝒙#.' 𝒙# = 𝑁 𝒙#.' 𝝁% 𝒙# , 𝑡 , Σ% 𝒙# , 𝑡
where Σ% 𝒙# , 𝑡 = 𝜎#(𝑰 = 𝛽#𝑰

• What is target of 𝑝& 𝒙)B5 𝒙) = 𝑁 𝒙)B5 𝝁& 𝒙), 𝑡 , 𝛽)𝑰 ?
• 𝑞 𝒙)B5|𝒙), 𝒙E is tractable! Why?
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Denoising diffusion probabilistic models(DDPM)

Image to noise(prescribed) Noise to image(learnable)

𝑞 𝒙#|𝒙#.' = 𝑁 𝒙# 𝛼#𝒙#.', 𝛽#𝑰
𝑞 𝒙#|𝒙/ = 𝑁 𝒙# P𝛼#𝒙/, 1 − P𝛼# 𝑰

𝑝% 𝒙#.' 𝒙# = 𝑁 𝒙#.' 𝝁% 𝒙# , 𝑡 , Σ% 𝒙# , 𝑡
where Σ% 𝒙# , 𝑡 = 𝜎#(𝑰 = 𝛽#𝑰

• What is target of 𝑝& 𝒙)B5 𝒙) = 𝑁 𝒙)B5 𝝁& 𝒙), 𝑡 , 𝛽)𝑰 ?
• 𝑞 𝒙)B5|𝒙), 𝒙E is tractable. Why?

𝑞 𝒙)B5|𝒙), 𝒙E =
𝑞 𝒙)|𝒙)B5, 𝒙E 𝑞 𝒙)B5|𝒙E

𝑞 𝒙)|𝒙E
= 𝑁 𝒙)B5|9𝝁) 𝒙), 𝑡 , o𝛽)𝑰

9𝝁) 𝒙), 𝑡 =
\𝛼)B5𝛽)
1 − \𝛼)

𝒙E +
𝛼) 1 − \𝛼)B5
1 − \𝛼)

𝒙),

o𝛽) =
1 − \𝛼)B5
1 − \𝛼)

𝛽)
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Denoising diffusion probabilistic models(DDPM)

Image to noise(prescribed) Noise to image(learnable)

𝑞 𝒙#|𝒙#.' = 𝑁 𝒙# 𝛼#𝒙#.', 𝛽#𝑰
𝑞 𝒙#|𝒙/ = 𝑁 𝒙# P𝛼#𝒙/, 1 − P𝛼# 𝑰

𝑝% 𝒙#.' 𝒙# = 𝑁 𝒙#.' 𝝁% 𝒙# , 𝑡 , Σ% 𝒙# , 𝑡
where Σ% 𝒙# , 𝑡 = 𝜎#(𝑰 = 𝛽#𝑰

𝑝& 𝒙)B5 𝒙) = 𝑁 𝒙)B5 𝝁& 𝒙), 𝑡 , 𝛽)𝑰 ≈ 𝑞 𝒙)B5|𝒙), 𝒙E
= 𝑁 𝒙)B5|9𝝁) 𝒙), 𝑡 , o𝛽)𝑰

• I.e.,

𝝁& 𝒙), 𝑡 ≈ 9𝝁) 𝒙), 𝑡 =
\𝛼)B5𝛽)
1 − \𝛼)

𝒙E +
𝛼) 1 − \𝛼)B5
1 − \𝛼)

𝒙)

• If 𝝁& 𝒙), 𝑡 ≔ 5
G#

𝒙) + 𝛽)𝒔& 𝒙), 𝑡 , then

𝒔& 𝒙), 𝑡 ≈ 𝛻𝒙# log 𝑞 𝒙) 𝒙E = −
𝒙) − \𝛼)𝒙E
1 − \𝛼)
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Foundation of DDPM

argmin
&

𝐷 𝑞 𝒙)B5|𝒙) ∥ 𝑝& 𝒙)B5|𝒙)

= argmin
&

𝐸𝒙)~$!"#" 𝐷 𝑞 𝒙)B5|𝒙), 𝒙E ∥ 𝑝& 𝒙)B5|𝒙)

• Proof: By Fubini theorem,

−^𝑞 𝒛 log 𝑝& 𝒛 𝑑𝒛 = −^ ^𝑞 𝒛|𝒙E 𝑝& 𝒛 𝑑𝒛 𝑝'()( 𝒙E 𝑑𝒙E

= 𝐷 𝑞 𝒛 ∥ 𝑝& 𝒛 + const. w. r. t. 𝜃
= 𝐸𝒙)~$!"#" 𝐷 𝑞 𝒛|𝒙E ∥ 𝑝& 𝒛 + const. w. r. t. 𝜃
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Learning objective of DDPM

𝝁& 𝒙), 𝑡 ≈ 9𝝁) 𝒙), 𝑡 =
\𝛼)B5𝛽)
1 − \𝛼)

𝒙E +
\𝛼) 1 − \𝛼)B5
1 − \𝛼)

𝒙)
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Learning objective of DDPM

• Optimizing the variational bound on log-likelihood

log 𝑝& 𝒙E = log^𝑝& 𝒙E:D 𝑑𝒙5:D = log^𝑝& 𝒙E:D
𝑞 𝒙5:D|𝒙E
𝑞 𝒙5:D|𝒙E

𝑑𝒙5:D

≥ ^𝑞 𝒙5:D|𝒙E log
𝑝& 𝒙E:D
𝑞 𝒙5:D|𝒙E

𝑑𝒙5:D
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Learning objective of DDPM

• Optimizing the variational bound on log-likelihood

log 𝑝& 𝒙E = log^𝑝& 𝒙E:D 𝑑𝒙5:D = log^𝑝& 𝒙E:D
𝑞 𝒙5:D|𝒙E
𝑞 𝒙5:D|𝒙E

𝑑𝒙5:D

≥ ^𝑞 𝒙5:D|𝒙E log
𝑝& 𝒙E:D
𝑞 𝒙5:D|𝒙E

𝑑𝒙5:D

• The Markov property of 𝑞 𝒙)|𝒙)B5 and 𝑝& 𝒙)B5|𝒙) implies 

𝑝& 𝒙E:D = 𝑝& 𝒙D m
)C%

D

𝑝& 𝒙)B5|𝒙) ,

𝑞 𝒙5:D|𝒙E = 𝑞 𝒙D|𝒙E m
)C%

D

𝑞 𝒙)B5|𝒙), 𝒙E
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Learning objective of DDPM

log
𝑝& 𝒙E:D
𝑞 𝒙5:D|𝒙E

= log 𝑝& 𝒙E|𝒙5 +T
)C%

D

log
𝑝& 𝒙)B5|𝒙)
𝑞 𝒙)B5|𝒙), 𝒙E

+ log
𝑝& 𝒙D
𝑞 𝒙D|𝒙E

^𝑞 𝒙5:D|𝒙E log 𝑝& 𝒙E|𝒙5 𝑑𝒙5:D = ^𝑞 𝒙5|𝒙E log 𝑝& 𝒙E|𝒙5 𝑑𝒙5

= 𝐸+ 𝒙%|𝒙) log 𝑝& 𝒙E|𝒙5

^𝑞 𝒙5:D|𝒙E log
𝑝& 𝒙D
𝑞 𝒙D|𝒙E

𝑑𝒙5:D = ^𝑞 𝒙D|𝒙E log
𝑝& 𝒙D
𝑞 𝒙D|𝒙E

𝑑𝒙D

= −𝐷 𝑞 𝒙D|𝒙E ∥ 𝑝& 𝒙D
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Learning objective of DDPM

^𝑞 𝒙5:D|𝒙E log
𝑝& 𝒙)B5|𝒙)
𝑞 𝒙)B5|𝒙), 𝒙E

𝑑𝒙5:D

= ^^𝑞 𝒙)B5, 𝒙)|𝒙E log
𝑝& 𝒙)B5|𝒙)
𝑞 𝒙)B5|𝒙), 𝒙E

𝑑𝒙)B5 𝑑𝒙)

= ^^
𝑞 𝒙)B5, 𝒙), 𝒙E

𝑞(𝒙E)
𝑞 𝒙), 𝒙E
𝑞 𝒙), 𝒙E

log
𝑝& 𝒙)B5|𝒙)
𝑞 𝒙)B5|𝒙), 𝒙E

𝑑𝒙)B5 𝑑𝒙)

= −^𝑞 𝒙)|𝒙E 𝐷 𝑞 𝒙)B5 𝒙), 𝒙E ∥ 𝑝& 𝒙)B5|𝒙) 𝑑𝒙)

= −𝐸+ 𝒙#|𝒙) 𝐷 𝑞 𝒙)B5 𝒙), 𝒙E ∥ 𝑝& 𝒙)B5|𝒙)
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Learning objective of DDPM

𝐸𝒙)~+ 𝒙) log 𝑝& 𝒙E
≥ 𝐸+ 𝒙) 𝐸+ 𝒙%|𝒙) log 𝑝& 𝒙E|𝒙5 − 𝐸+ 𝒙) 𝐷 𝑞 𝒙D|𝒙E ∥ 𝑝& 𝒙D

−T
)C%

D

𝐸+ 𝒙) 𝐸+ 𝒙#|𝒙) 𝐷 𝑞 𝒙)B5 𝒙), 𝒙E ∥ 𝑝& 𝒙)B5|𝒙)
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Learning objective of DDPM

• 𝑝& 𝒙)B5 𝒙) = 𝑁 𝒙)B5 𝝁& 𝒙), 𝑡 , 𝛽)𝑰
• 𝑞 𝒙)B5|𝒙), 𝒙E = 𝑁 𝒙)B5|9𝝁), o𝛽)𝑰

• 9𝝁) 𝒙), 𝑡 = VG#*%W#
5BVG#

𝒙E +
G# 5BVG#*%
5BVG#

𝒙)

• o𝛽) =
5BVG#*%
5BVG#

𝛽)
• 𝑞 𝒙)|𝒙E = 𝑁 𝒙) \𝛼)𝒙E, 1 − \𝛼) 𝑰 , 𝒙) = \𝛼)𝒙E + 1 − \𝛼)𝝐, 
𝝐~𝑵(𝟎, 𝑰)
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Learning objective of DDPM

𝐿)B5 𝜃 = 𝐸𝒙#~+(𝒙#) 𝐷 𝑞 𝒙)B5|𝒙), 𝒙E ∥ 𝑝& 𝒙)B5|𝒙)
= 𝐸𝒙)~$!"#"𝐸𝒙#~+(𝒙#|𝒙)) 𝐷 𝑞 𝒙)B5|𝒙), 𝒙E ∥ 𝑝& 𝒙)B5|𝒙)
= 𝐸𝒙)~$!"#"𝐸𝒙#~+(𝒙#|𝒙)) 𝝁& 𝒙), 𝑡 − 9𝝁) 𝒙), 𝑡 %

%

= 𝐸𝒙)~$!"#"𝐸𝒙#~+(𝒙#|𝒙)) z

z

𝝁& 𝒙), 𝑡 −
\𝛼)B5𝛽)
1 − \𝛼)

𝒙E

−
𝛼) 1 − \𝛼)B5
1 − \𝛼)

𝒙)
%

%

=
𝛽)%

𝛼) 1 − \𝛼)
𝐸𝒙)~$!"#"𝐸𝝐~/ 𝟎,𝑰 𝝐& \𝛼)𝒙E + 1 − \𝛼)𝝐, 𝑡 − 𝝐 %

%

• if 𝝁& 𝒙), 𝑡 = 5
G#

𝒙) +
W#
5BG#

𝝐& 𝒙), 𝑡
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Training and noise predictor

Algorithm 1 Training
1: repeat
2: x0 ⇥ q(x0)
3: t ⇥ Uniform({1, . . . , T})
4: ✏ ⇥ N (0, I)
5: Take gradient descent step on

⇠✓

��✏r ✏✓(
�
↵̄tx0 +

�
1r ↵̄t✏, t)

��2

6: until converged

Algorithm 2 Sampling

1: xT ⇥ N (0, I)
2: for t = T, . . . , 1 do
3: z ⇥ N (0, I) if t > 1, else z = 0

4: xt�1 = 1p
↵t

⇣
xt r 1�↵tp

1�↵̄t
✏✓(xt, t)

⌘
+ �tz

5: end for
6: return x0

Equation (10) reveals that µ✓ must predict 1�
↵t

R
xt ⇠ �t�

1�↵̄t
✏
Y

given xt. Since xt is available as
input to the model, we may choose the parameterization

µ✓(xt, t) = µ̃t

p
xt,

1�
�̄t

(xt ⇠
�

1 ⇠ �̄t✏✓(xt))


=

1
�

�t

p
xt ⇠ ↵t�

1 ⇠ �̄t
✏✓(xt, t)


(11)

where ✏✓ is a function approximator intended to predict ✏ from xt. To sample xt�1  p✓(xt�1|xt) is
to compute xt�1 = 1�

↵t

R
xt ⇠ �t�

1�↵̄t
✏✓(xt, t)

Y
+�tz, where z  N (0, I). The complete sampling

procedure, Algorithm 2, resembles Langevin dynamics with ✏✓ as a learned gradient of the data
density. Furthermore, with the parameterization (11), Eq. (10) simplifies to:

Ex0,✏

�
↵

2
t

2�
2
t �t(1 ⇠ �̄t)

XX✏ ⇠ ✏✓(
�

�̄tx0 +
�

1 ⇠ �̄t✏, t)
XX2

Q
(12)

which resembles denoising score matching over multiple noise scales indexed by t [55]. As Eq. (12)
is equal to (one term of) the variational bound for the Langevin-like reverse process (11), we see
that optimizing an objective resembling denoising score matching is equivalent to using variational
inference to fit the finite-time marginal of a sampling chain resembling Langevin dynamics.

To summarize, we can train the reverse process mean function approximator µ✓ to predict µ̃t, or by
modifying its parameterization, we can train it to predict ✏. (There is also the possibility of predicting
x0, but we found this to lead to worse sample quality early in our experiments.) We have shown that
the ✏-prediction parameterization both resembles Langevin dynamics and simplifies the diffusion
model’s variational bound to an objective that resembles denoising score matching. Nonetheless,
it is just another parameterization of p✓(xt�1|xt), so we verify its effectiveness in Section 4 in an
ablation where we compare predicting ✏ against predicting µ̃t.

3.3 Data scaling, reverse process decoder, and L0

We assume that image data consists of integers in {0, 1, . . . , 255} scaled linearly to [⇠1, 1]. This
ensures that the neural network reverse process operates on consistently scaled inputs starting from
the standard normal prior p(xT ). To obtain discrete log likelihoods, we set the last term of the reverse
process to an independent discrete decoder derived from the Gaussian N (x0;µ✓(x1, 1), �2

1I):

p✓(x0|x1) =
D|

i=1

{ �+(xi
0)

��(xi
0)

N (x; µi
✓(x1, 1), �2

1) dx

✓+(x) =

z
p if x = 1
x + 1

255 if x < 1
✓�(x) =

z
⇠p if x = ⇠1
x ⇠ 1

255 if x > ⇠1

(13)

where D is the data dimensionality and the i superscript indicates extraction of one coordinate.
(It would be straightforward to instead incorporate a more powerful decoder like a conditional
autoregressive model, but we leave that to future work.) Similar to the discretized continuous
distributions used in VAE decoders and autoregressive models [34, 52], our choice here ensures that
the variational bound is a lossless codelength of discrete data, without need of adding noise to the
data or incorporating the Jacobian of the scaling operation into the log likelihood. At the end of
sampling, we display µ✓(x1, 1) noiselessly.

3.4 Simplified training objective

With the reverse process and decoder defined above, the variational bound, consisting of terms derived
from Eqs. (12) and (13), is clearly differentiable with respect to � and is ready to be employed for

4

mean predictor 𝝁& 𝒙), 𝑡

=
1
𝛼)

𝒙) +
𝛽)
1 − 𝛼)

𝝐& 𝒙), 𝑡 noise predictor

• I.e., 
5
5BG#

𝝐& 𝒙), 𝑡 ≈ ∇𝒙# log 𝑞 𝒙)|𝒙E
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Architecture: U-net + self-attention + time Embedding
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Architecture: U-Net
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Experiments

Figure 3: LSUN Church samples. FID=7.89 Figure 4: LSUN Bedroom samples. FID=4.90

Algorithm 3 Sending x0

1: Send xT ⇥ q(xT |x0) using p(xT )
2: for t = T ⇠ 1, . . . , 2, 1 do
3: Send xt ⇥ q(xt|xt+1,x0) using p✓(xt|xt+1)
4: end for
5: Send x0 using p✓(x0|x1)

Algorithm 4 Receiving
1: Receive xT using p(xT )
2: for t = T ⇠ 1, . . . , 1, 0 do
3: Receive xt using p✓(xt|xt+1)
4: end for
5: return x0

We find that training our models on the true variational bound yields better codelengths than training
on the simplified objective, as expected, but the latter yields the best sample quality. See Fig. 1 for
CIFAR10 and CelebA-HQ 256 ⇠ 256 samples, Fig. 3 and Fig. 4 for LSUN 256 ⇠ 256 samples [71],
and Appendix D for more.

4.2 Reverse process parameterization and training objective ablation

In Table 2, we show the sample quality effects of reverse process parameterizations and training
objectives (Section 3.2). We find that the baseline option of predicting µ̃ works well only when
trained on the true variational bound instead of unweighted mean squared error, a simplified objective
akin to Eq. (14). We also see that learning reverse process variances (by incorporating a parameterized
diagonal ⌃✓(xt) into the variational bound) leads to unstable training and poorer sample quality
compared to fixed variances. Predicting ✏, as we proposed, performs approximately as well as
predicting µ̃ when trained on the variational bound with fixed variances, but much better when trained
with our simplified objective.

4.3 Progressive coding

Table 1 also shows the codelengths of our CIFAR10 models. The gap between train and test is at
most 0.03 bits per dimension, which is comparable to the gaps reported with other likelihood-based
models and indicates that our diffusion model is not overfitting (see Appendix D for nearest neighbor
visualizations). Still, while our lossless codelengths are better than the large estimates reported for
energy based models and score matching using annealed importance sampling [11], they are not
competitive with other types of likelihood-based generative models [7].

Since our samples are nonetheless of high quality, we conclude that diffusion models have an inductive
bias that makes them excellent lossy compressors. Treating the variational bound terms L1 + · · ·+LT

as rate and L0 as distortion, our CIFAR10 model with the highest quality samples has a rate of 1.78
bits/dim and a distortion of 1.97 bits/dim, which amounts to a root mean squared error of 0.95 on a
scale from 0 to 255. More than half of the lossless codelength describes imperceptible distortions.

Progressive lossy compression We can probe further into the rate-distortion behavior of our model
by introducing a progressive lossy code that mirrors the form of Eq. (5): see Algorithms 3 and 4,
which assume access to a procedure, such as minimal random coding [19, 20], that can transmit a
sample x � q(x) using approximately DKL(q(x)  p(x)) bits on average for any distributions p and
q, for which only p is available to the receiver beforehand. When applied to x0 � q(x0), Algorithms 3
and 4 transmit xT , . . . ,x0 in sequence using a total expected codelength equal to Eq. (5). The receiver,

6

• 𝑇 = 1000, linear variance schedule 𝛽5 = 10B[ to 𝛽D = 0.02
• U-Net backbone similar to an unmasked PixelCNN++ with group 

normalization

Denoising Diffusion Probabilistic Models
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